logo



student ONLINE CANDIDATES : 157




PAYMENT FOR WAEC AND JAMB EXPO HAS STARTED, PAY NOW!!!



neco runs

WAEC / NECO / NABTEB /GCE SUBSCRIPTION PAYMENT EXPO


HOW TO PAY FOR WAEC/ NECO/ NABTEB /GCE ANSWER:

ALL SCIENCE ANSWERS + PRACTICAL COST: N5,500

ALL ART OR COMMERICAIL ANSWERS COST #4,500

 

WHATSAPP US AND SEND:- EXAM TYPE + MTN-CARD + PHONE NUMBER + SUBJECT TO 09055986588 (ONLY ON WHATSAPP)

UPDATE: Our Waec, Neco and Nabteb Exam Runs Payment is on, Earlyanswer is 100% Legit (Invite Your Classmates,Friends Here)

Answer Page

Answer Page

Confirmation page

Verify NECO / WAEC Payment

EARLYANSWER OFFICIAL WHATSAPP GROUP

JOIN OUR GENERAL WHATSAPP GROUP




« PREVIOUS POST:

| NEXT POST:

»

2020 NECO FURTHER MATHEMATICS OBJ AND ESSAY QUESTIONS AND ANSWERS

FURTHER MATHS OBJ:
F/Maths-Obj.
1EAAEDDBADB
11DBEDDCBBAA
21CEABCCCBDC
31ACBCBEDCAB
41CEEAEBADEC

 


 

(2i)
F(x) = x³ – 6x² + 9x
FD/dx (fx) = 3x² – 12x + 9
Using standard deviation

(2ii) Gradient of f(x) at point A (2,2)
d/dx f(x) = 3x² – 12x + 9

At point A , x=2
= 3(2)² – 12(2) + 9
= 3(4) – 12(2) + 9
= 12 -24 + 9
= -3

(2iii)
Equation of Tangent at point A

y-y¹= m ( x-x¹)
but m= -3
at point A, y¹= 2¹ x¹= 2
y-2=-3(x-2)
y-2 =-3x+6
y=-3x +6 + 2=> y= 8-3x

 

 

(4)
(1-√3)²(x+y√3) = 2√3 -2
(1-√3)(1-√3)(x+y√3) = 2√3 -2
(1- √3 – √3 + √9)(x+y√3) = 2√3 – 2
(1-2√3 + 3)(x+y√3) = 2√3 – 2
(1-2√3 + 3)(x+y√3) = 2√3 – 2
(1+3 – 2√3)(x+y√3)= 2√3 – 2
(4-2√3)(x+y√3) = 2√3 – 2
x+y√3 = 2√3 – 2/4 – 2√3
x+y√3 = 2(√3 – 1)/2(2- √3)
x+y√3 = √3 -1/2- √3
x+y√3 = √3 – 1/2 – √3 * 2+√3/2+√3
x+y√3 = (√3 -1)(2+√3)/(2- √3)(2+ √3)
x+y√3 = 2√3 + √9 – 2- √3/4+2√3 – 2√3 – √9
x+y√3 = 2√3 + 3 – 2 – √3/4+2√3 – 2√3 – 3
x+y√3 = 1+ 2√3 – √3/4-3+2√3 – 2√3
x+y√3 = 1+ √3/1
x+y√3 = 1+ √3
x=1 and y=1
====================================

(10a)
Given
2x²-5x-3=0
Therefore
∝+β=5/2 and ∝β =3/2
(i)from
1/∝+1/β=∝+β/∝β=5/2/-3/2=5/2*2/3=-5/3

(ii)∝³+β³=(∝+β)[(∝+β)²-3*β]
=5/2[(5/2)²-3(-3/2)]
=5/2(25/4+9/2)
=5/2*43/4
=215/8
=26⅞

(10b)
Guren:
x² + (q+2)x+ q²= 0
For equal roots :
be – Hac =0
Me have;
(q+2)² – 4q²=0
q²+4q+4-4q²=0
3q²-4q-4=0
(3q+2) (q-2) =0

Either :
3q²+2=0
3q=-2
q=-⅔

OR
q-2=0
q=2

(10c)
Given:
P(2,5), Q(1,4) and R (3, 8)
Using Matrices
approaches, transform the vertices of the triagle into a square given Matrix as
below.
T = [2,5,1]
[1,4,1]
[3,8,1]
Hance, Area of the tringle will be:
A=±½|2,5,4|
|1,4,1|
|3,8,1|

A=±½[1|5,1|
|8,1|- 4|2,1|
|3,1|+|2,5|3,8|]

A=±½[(5-8)-4(2-3)+(16-15)]

A=±-(-3 + 4 + 1) = ½*2 = 1 squared unit
====================================

(9a)
By formula area of the sector is given by :
A = 1/2rθ , where θ is in radians
Therefore,
θr²/2 = 147

θr² = 294
θ = 294/r² ——-(1)
Also,
Perimeter of the sector will be 56cm
So,
P = θr + 2r
Therefore,
θr + 2r = 56
θr = 56-2r
θ = 56-2r/r

(9b)
Set the RHS of both equations equal since the LHS are equal
:. 294/r² = 56-2r/r
:. 294/r = 56-2r
294 = 56r – 2r²
= 2r² – 56r + 294 = 0
= r² – 28r + 147 = 0
= (r-7)(r-21) = 0
Either:
r-7 = 0
r=7
OR
r-21 = 0
r=21
And,
When r=21
θ=294/21² = 0.7rad
From equ(1) and when r=7
θ=294/7² =6rad
====================================

(5)
Mass,m=150g, g=9.8m/s²
When the lift moves with a constant velocity acceleration
a=o
(i) Reaction,R=w=mg
R=mg
=150×9.8
=1470N

(ii) When the lift moves up word with acceleration 4.5m/s²
F=ma=R-mg
: . R=ma+mg
R=m(a+g)
R=150(4.5+9.8)
=150×14.3
=2145N
====================================

(13ai)
Given: mass ,m =10kg
Force,F = 40N
Time, t = 0.5secs
Impulse, I = Ft = 40×0.5 = 20Ns

(13aii) Ft = m(v-u) where u= 0 (at rest)
20 = 10(v-0)
20 = 10v
V = 20/10 = 2m/s
Final speed = 2m/s

(13aiii)
Given: u=0 ; v=2m/s ; t=0.5secs

S= 1/2(u+v)t
S= 1/2(0+2)×0.5
S= 0.5 metres
Distance = 1/2 metre or 50cm

(13b)
Range R , = Time of flight × Horizontal component of speed

75 = T×35×cos38°
T = 75/35cos38° = 2.719secs

Vertical displacement= vertical component × Time of flight of speed
= Usinθ × T
= 35sin38 × 75/35cos38
= 75Tan38°
= 58.596 metres
~ 58.6 metres
====================================

(2i)
F(x) = x³ – 6x² + 9x
FD/dx (fx) = 3x² – 12x + 9
Using standard deviation

(2ii) Gradient of f(x) at point A (2,2)
d/dx f(x) = 3x² – 12x + 9

At point A , x=2
= 3(2)² – 12(2) + 9
= 3(4) – 12(2) + 9
= 12 -24 + 9
= -3

(2iii)
Equation of Tangent at point A

y-y¹= m ( x-x¹)
but m= -3
at point A, y¹= 2¹ x¹= 2
y-2=-3(x-2)
y-2 =-3x+6
y=-3x +6 + 2=> y= 8-3x
================================

(9a)

(9b)

====================================

(5)

====================================

(10a&10b)

====================================

(13a)

(13b)
Coming…..
====================================

(6)

====================================

(2)

Posted by on 27th September 2020.

Tags: ,

Categories: NECO

HOW TO WIN MTN CARD FROM EARLYANSWER
 
CLICK HERE TO SHARE THIS WEBSITE TO YOUR WHATSAPP FRIENDS / GROUPS AND WIN MTN CARD NOW

Chat Admin After You Share To 20 People On Whatsapp to Redeem The Price

Click here to submit your phone number for free updates about WAEC, NECO, NABTEB, GCE.

2023/2024 EXAM RUNS UPDATES👇

CLICK HERE TO GET WAEC 2023 EXAM RUNS


CLICK HERE TO GET NECO 2023 EXAM RUNS


CLICK HERE TO GET NABTEB 2023 EXAM RUNS


Our Answer Page for All Examination

0 Responses

Leave a Reply

« PREVIOUS POST:

| NEXT POST:

»